Journal of VLSI Signal Processing, 3, 265-274 (1991)

© 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Improved CLA Scheme with Optimized Delay

BRIAN D. LEE AND VOJIN G. OKLOBDZIJA*

Department of Electrical Engineering and Computer Science, University of California, Berkeley

Received January 31, 1991; Revised April 25, 1991.

Abstract. The delay characteristics of carry-lookahead (CLA) adders are examined with respect to a delay model
that accounts for fan-in and fan-out dependencies. Though CLA structures are considered among the fastest topologies
for performing addition, they have also been characterized as providing marginal speed improvement for the amount
of hardware invested. This analysis shows that this inefficiency can be explained by the suboptimal nature of com-
mon CLA implementations. Simulation results show that the CLA structures in wide use can be improved by vary-
ing the block sizes and the number of levels within each adder. Examples of optimal CLA structures are given
and heuristic methods for finding these structures are presented.

1. Introduction

Analysis of carry-lookahead adders is important in the
design of high performance machines. In these designs,
processor speed is a primary concern and carry-look-
ahead structures are often used because their delay
times exhibit log dependence on the size of the adder
and they are considered among the fastest circuit topol-
ogies for performing addition. However, adder com-
parisons [1], [2] have ranked CLA structures low on
effective hardware utilization and this apparent ineffi-
ciency raises concerns over the optimality of current
CLA implementations. Simulation results from this re-
search show that the commonly used CLA structures
can be improved by varying block sizes and levels
within the adder.

Typical CLA implementations are made of look-
ahead units of relatively fixed sizes. This artificial con-
straint produces slack in the circuit and results in poor
hardware utilization. The strategy of varying group
sizes to reduce slack and improve performance is a
promising idea and has been used successfully on carry-
skip adders [3], [4]. A natural extension of this method
is to also vary the number of lookahead levels [S], [6].
The example structures in figure 1 illustrate what it
means to vary group sizes and lookahead levels. Each
box corresponds to a BCLA/CLA unit and the enclosed
number gives the unit size in bits. The dotted lines in
figure 1(d) represent a connection to a primary input

*Currently with IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598.

Fig. 1. Degrees of freedom in group sizes and lookahead levels:
(a) fixed groups and fixed levels, (b) variable-sized groups between
levels and fixed levels, (c) variable-sized groups anywhere (between
levels and within levels) and fixed levels, and (d) variable-sized groups
anywhere and variable levels.

of the CLA network. All other connections to primary
inputs are implicit and not shown. Since an accurate
measure of the available slack is required to effectively
implement these strategies, this work uses a delay
model that accounts for fan-in and fan-out dependen-
cies. The parameter values used in the model are based
on industrial data. - =

266 Lee and Oklobdzija

A simulation program has been written to comparc
different CLA structures. Preliminary data on varying
block sizes was obtained through exhaustive search.
Based on this data and an analysis of delay and slack
in the CLA scheme, heuristics were chosen to find
structures with completely variable block sizes and
levels. The structures found by these heuristics are
faster than more constrained topologics.

2. Carry Lookahead Structure

The simulation results in this paper are based on carry-
lookahead adders that implement full lookahead. A
description of the basic organization of carry-lookahead
adders can be found in references such as [7]. Each
adder consists of three main components—the propa-
gate and generate generation circuitry, the carry-look-
ahead network, and the sum generation circuitry. This
work concerns varying the sizes of circuit blocks and
the number of levels in the carry-lookahead network
to optimize adder delay.

Given an n-bit adder with inputs, 4 and B, the logic
equations for producing the initial propagate and gen-
erate signals and the final sum signals are

P =4 ® B
G, = AB;

and
S; =P @ Ciy

for 0 < i < n — 1. The simulations assume that P;
and S; are produced by monolithic XOR gates instead

of two levels of NAND gates and the sum XOR gate
is assumed to have a fan-out of one.

The carry-lookahead network in a full carry-look-
ahead adder consists of a tree of block carry-lookahcad
(BCLA) units rooted at a single carry-lookahead (CLA)
unit. Two different implementations of BCLA/CLA
units are analyzed. Their performance differences are
discussed later.

The first implementation generates carry signals in
two levels of logic. Four-bit versions of these circuits
are shown in figures 2 and 3. A k-bit carry-lookahead
unit of this type generates

G =G+ GP + GaPi By

b A GyPy .. Pt C Py P;

where 0 < j < k — 1 and ak-bit block carry-lookahead
unit of this type generates

P* = P()Pl e Pk~~l
G)‘< Gk—l + Gk—ZPk41 + ...
C; = G + G-\ P; + GiaPji Py

J
+ ...+ Gy ... P+ C Py ... P

il

+ GyP, ... Py

il

where 0 < j < k — 2.

The second implementation generates carry signals
in three levels of logic. Four-bit versions of these cir-
cuits are shown in figures 4 and 5. A k-bit carry-
lookahead unit of this type generates

where 0 < j < k — 1 and a k-bit block carry-lookahead
unit of this type generates

1]

G Co

Fig. 2. A 4-bit carry-lookahead unit with 2-level C; logic. -

Improved CLA Scheme with Optimized Delay 267

3 3 2 1 1 0 0
P —G
[{ I i Cq
<
& %o
Fig. 3. A 4-bit block carry-lookahead with 2-level C; logic.
Py G P G2 Pp 8 R G
T S
%
G % S
Fig. 4. A 4-bit carry-lookahead unit with 3-level C; logic.
P =P, of A;, B; and C_; is ignored and the adder delay is cal-
G* = G culated as the time required to generate the slowest
- Yk-1

C =G + C_ P}

where 0 < j < k — 2. For both circuit blocks,
Gj* = C;j -+ (;j_le + Gj—ZPj—IPj

+ ...+ GoPy ... P;

and

The simulations also assume that C_; and all 4;, B;
are latched and available at time ¢ = 0. Fan-out loading

signal from among S; and C,_;.
3. Carry Lookahead Optimization

The basic goal of this research is to show how to opti-
mize CLA structures by varying group sizes and look-
ahead levels. The purpose of these operations is to ex-
ploit the delay differences that represent under-utilized
time. Early signals can be delayed by modifying the
network to make the signals the result of more look-
ahead computation. Since this allows the addition of
larger operands in the same amount of time, slack

268 Lee and Oklobdzija

G

Fig. 5. A 4-bit block carry-lookahead unit with 3-level C; logic.

reduction corresponds to adder structure optimization.
The optimization requires a delay model that accurately
measures slack in the circuit, an examination of the
delay characteristics of the circuit blocks, and an anal-
ysis of critical delay paths to identify slack in the cir-
cuit. These requirements lead to a heuristic method for
determining optimal CLA structures.

3.1. Delay Model

Logic gate delays are modeled as
delay = f(fi, fo)
=A+ B-fi+ (D + E-fi- fo

Simpler delay models that use unit gate delays are inad-
equate because they do not reveal all the slack in the
circuit.

The simulations use the following delay functions:

fup = 0.1058 + 0.1175fi + (0.0825 + 0.0148fi)fo
fop = 0.2825 + 0.1675fi + (0.0911 + 0.0037fi)fo
ty = 0.265 + 0.1016fo

teor = 0.945 + 0.05645f0.

The constants in these functions are based on LSI Logic
Corporation’s 1.5 Micron Compacted Array™ Technol-
ogy [8]. To limit complexity, the models assume that
that all logic gates are single, possibly large, gate struc-
tures rather than multiple levels of smaller gates.

3.2. BCLA/CLA Delay Characteristics

An understanding of BCLA/CLA delay characteristics
is important for finding opportunities to reduce slack
in CLA structures. In particular, the fan-in and fan-out
properties of the circuits must be analyzed.

The input and output loading on the propagate and
generate signals of a BCLA can be derived by induction
on the circuits of figures 2, 3, 4, and 5. By inspection,
the following results are obtained. Given a k-bit BCLA
unit connected to the jth input of an m-bit BCLA unit

e G* of the k-bit BCLA unit has fan-out (m — j).

e G* of the k-bit BCLA unit has worst case fan-in k.
Specifically, in the two-level implementation of G,
the first level NAND gate i associated with input G;
has fan-in & — 1.

e P* of the k-bit BCLA unit has fan-in k.

e P* of the k-bit BCLA unit has fan-out (m — j)(j + 1)

Examples of these relationships are shown graphically
in figures 6 and 7. The analysis for a BCLA unit feeding
into a CLA unit is similar and gives the same results.
The loading on carry signals may be derived by a
similar analysis of the circuit diagrams. Each carry sig-
nal, C;, of a BCLA/CLA unit is the C_; of BCLA
units on previous levels. An example of this is shown in~
figure 8. In particular, it connects to its (i + 1)th fan-in
unit, the zeroth fan-in unit of its (i + 1k fan-in unit, the
zeroth fan-in unit of the zeroth fan-in unit of its ¢ + Dth
fan-in unit, etc. Bach carry signal also connects to an
XOR gate in the sum generation circuitry. A BCLA
unit of size k contributes k — 1 to the fan-out loading
of its input C_; signal. In the two-level implementation

Fan—out ¥Fan—out Loading On Each Input Signal (m = 8)

GENERATE
20.00 : [PP
PROPAGATE

1800

16.00

14,00

1200

10.00

8.00

6.00 -~

4.00- -~ SR

200 -

0.00 - -)

:) Position
0.00 2.00 4.00 6.00

PROPAGATE

Position

0.00 Z.bO 4.00 6.00 8.00

Fig. 7. Worst case fan-in gates for the inputs of an 8-bit BCLA unit.

MSB LSB

Fig. 8 Fan-out path within the CLA network of C, of the final look-
ahead unit.

of C,, the worst case first-level NAND gate has fan-in
i + 2. In the three-level implementation of C;, C_,
always connects to an input NAND gate with a fan-in
of 2.

These fan-in and fan-out properties have an impor-
tant effect on the critical delay analysis in BCLA/CLA
units. Unlike typical analyses, the P* delay cannot be

Improved CLA Scheme with Optimized Delay 269

neglected with respect to the G delay. Even though
computing P” requires one less level of logic than cal-
culating G~, the potentially high group propagate fan-
out loading may place generation of P* on the critical
path. The P* delay path should be compared to the
Gy-to-G™ delay path which contains the worst case fan-
in gate.

Another important delay path is the carry propaga-
tion (assimilation) path. This is the path from C_; to
some C; and is critical when C_; arrives much later
than all P; and G;. Assuming a k-bit BCLA unit, the
worst case path for the two-level implementation of C;
is from C_; to C;_,. For the corresponding three-level
implementation of C;, the paths are equal for all i be-
cause C_; feeds gates of constant fan-in. When C_;-
to-C; delays are a significant fraction of the total adder
delay, the three-level implementation should produce
faster adders than the two-level implementation because
of its superior fan-in properties. This condition should
hold for larger adders.

An issue related to BCLA delay is the relationship
between group size and number of lookahead levels.
Clearly, larger BCLA units have longer delays than
smaller units. Also, adding more levels of BCLA units
tends to increase delay because of the extra logic levels.
However, at some size, implementing a single large
BCLA unit as multiple levels of BCLA units is advan-
tageous. Unfortunately, determining this breakpoint is
difficult because the delay of a BCLA unit depends on
the block sizes on the next level of lookahead and typ-
ically, those sizes are determined by the number and
sizes of blocks on all previous levels.

3.3. Critical Path Analysis

Identifying critical paths in CLA structures is impor-
tant because the remaining noncritical delay paths rep-
resent opportunities for slack reduction. Standard CLA
analyses assume that the critical path in the adder is
always as shown in figure 9. Unfortunately, the validity
of this assumption is not guaranteed when variable
group sizes and lookahead levels are allowed. However,
the actual critical path will have an analogous form.
The first part of the critical path is the delay to the gen-
eration of a carry signal in the CLA unit and the last
part of the critical path is the propagation of this carry
signal back through some subtree of the BCLA net-
work. Furthermore, each subtree of the network has
an analogous critical path. Opportunities to reduce
slack can be found in each portfon™

270 Lee and Oklobdzija

MSB 1.SB

Fig. 9 Critical path assumed by typical analyses.

The delay to the CLA unit depends only on G* and
P* delays. Most of this delay is expected to be from
Gy-to-G ™ delays because this path has both high fan-
out loading and worst case fan-in gates. On a given
level, the critical path might depend on the generation
of P*, but on the next level, the critical path will most
likely be the group generate computation because G*
is a function of all the input propagate signals except
P,. The adder delay after the CLA unit depends only
on carry propagation delays. All P; and G; signals have
already settled and the critical path follows the worst
C_,-to-C; path in a BCLA unit on each level.

Assuming that the generation of G* is the critical
path through a BCLA unit, then the group feeding G;
can be larger than the group feeding G; for i > j,
since Gj feeds a higher fan-in gate. This will reduce
the slack between the different G;-to-G* delays. This
argues for fewer levels of smaller lookahead units in
the least significant bits than in the most significant bits
of every subtree of lookahead units.

The slack in the second portion of a critical path
arises from different C; delay times in a lookahead
unit. The subtrees fed by C; should be faster than
those fed by C; for j > i. This indicates that fewer
levels of smaller lookahead units should handle the most
significant bits of each subtree than should handle the
least significant bits.

The criteria for each portion of the critical path con-
tradict each other. This indicates that the best opportu-
nities to increase group sizes or add levels of lookahead
may occur in the middle bits of each subtree rather than
at the ends. Unfortunately, this criteria cannot be used
to make specific decisions except for trivial cases. The
problem is that the fan-in and fan-out dependencies of
the delay model interfere with local optimizations. The
whole adder must be analyzed because decisions on
each level depend on the sizes of the next level which
depend on the structure of the previous levels. A
dynamic programming method is used to avoid the
complexity of analyzing size combinations for entire
adder structures.

3.4. Heuristics

The basic algorithm for finding an optimal CLA struc-
ture is based on dynamic programming. The generic
pseudo-code for this approach is shown in figure 10.
The problem of finding the optimal n-bit adder structure
is reduced to a series of subproblems. Each subproblem
requires finding an optimal (k + b)-bit adder structure
given a k-bit adder structure. Note that the number of
subproblems is bounded by n — ky. The main compo-
nents of the algorithm are the transformation step and
the choice of initial adder structure.

The transformation step increases adder size by add-
ing levels and/or increasing group sizes. Greedy heu-
ristics are used to determine the location and magnitude
of these increments. When increasing the size of a
group, the extra bits are added to the most significant
end of the group and the inputs to these new positions
are connected directly to the initial propagate and gen-
erate generation circuitry. The solution of the transfor-
mation problem is simplified by formulating the deci-
sion to increase the number of lookahead levels as a
decision to increase group sizes. This reduction is ob-
tained by viewing all the inputs into the carry-lookahead
network as groups of size one. Thus, increasing the size
of a 1-bit inpur group often corresponds to increasing
the number of lookahead unit levels in the adder. In-
creasing the size of such an input group does not always
increase the number of levels because for any given net-
work, multiple input groups may exist which will in-
crease the number of lookahead levels and only the first
one of these groups which is enlarged will actually
increase the number of levels.

The choice for the initial adder structure is con-
strained to single CLA units. Ideally, the initial structure
should be optimal and should admit a transformation
path to a final optimal structure. The results show that
the simple constraint of starting with a single CLA unit
is effective.

Many different heuristics can be used to perform
the transformation step and to choose the initial CLA
unit size. Two different sets of heuristics were used to
implement two different versions of the basic algorithm. -

let i=0
let initial structure = ko-bit adder

while (k; <n)
transform the current k;-bit adder into a {k; + b;)-bit adder, b; > 1
let kiny = ki + b
let i=i+1

end

Fig. 10. Basic algorithm for finding tii¢ stificture of an n-bit adder.

The first version runs the basic algorithm for differ-
ent starting CLA unit sizes and chooses the best structure
from among all the runs. The current range of starting
sizes is from 2 to 16. The transformation step constrains
b; = 1, Vi. Each block in the network except for the
CLA unit is considered for receiving this extra bit. For
each block, the delay of the structure that results from
increasing the block size by one is calculated. The trans-
formation is performed by enlarging the block that
results in the adder structure with the shortest delay.

The second version always starts with a 2-bit CLA
unit and then uses a more complex transformation step.
The basic goal of the transformation heuristic is to
achieve the maximum increase in adder size per unit
delay increase. Increasing by one the size of some group
in an adder of size k and delay d results in an adder
of size k + 1 and delay d + 6. Depending on the loca-
tion of the enlarged block, the size of other groups may
also be increased without further increase in adder
delay. In general, it is possible to increase the size of
other groups to produce an adder of size k + b and
delay d + & where b = 1. Given the selection of the
initial enlarged group, the location of the remaining
b — 1 bits can be found by adding as many extra bits
as possible to each group of the network such that the
adder delay remains d + 8. The value of b — 1 is max-
imized by processing groups by level, starting with the
final CLA unit and working back to the initial propagate
and generate circuitry. Within levels, groups are proc-
essed from least significant to most significant. The
transformation heuristic at step i calculates for each
group j in the network

min;, n — k;
benefi[j s __.(J__._l)_
S
J
where
8; = increase in delay caused by increasing the size

of group j by 1

b, = maximum increase in adder size possible
given the selection of group j for the initial
1 bit increment and a delay increase limit of 9

k; = size of adder before transformation step i

and
n = desired final adder size.

The group j with the largest benefit value is chosen to
transform the k;-bit adder into a (k; + min(b;, n — k;)-
bit adder.

A similar method has been implemented by [5]. That
method also uses dynamic programming and the recur-

Improved CLA Scheme with Optimized Delay 271

sive step increascs adder size by determining an optimal
subtree of BCLA units to connect to a particular input
position of the final CLA (BCLA) unit. Input positions
are processed from least significant to most significant.
In contrast, the method described here increases adder
size by increasing group sizes or levels anywhere in the
transitive fan-in of the final CLA unit. Also, the method
of [5] requires delay models that are linear monotone
nondecreasing non-negative functions of fan-in and fan-
out and only optimizes the carry-lookahead network.
This work allows delay models that are any arbitrary
function of fan-in and fan-out and optimizes the whole
adder. Simulating the whole adder exploits the delay
differences between the initial propagate and generate
signals and properly accounts for loading by the sum
generation circuitry. Some comparisons with the results
of the method in [5] are given in the next section.

4. Results

Figures 11 and 12 show results for the two different im-
plementations of BCLA/CLA units. Each graph has
three curves corresponding to requiring fixed-sized
groups and fixed number of levels (Fixed), allowing
different sized groups only on different levels and re-
quiring fixed levels (Inter-level), and allowing variable
sizes and levels anywhere (Variable). The delay values
are for the best structures of each category. The Fixed
and Inter-level curves were obtained by simulation of
all possible combinations. If an integral number of
groups of the chosen size for a level handled more

Delay, s 2 Level BCLA/CLA: Delay vs. Size
i ‘ ! Fixed
16.00 -+ - T b g fevel

/,,_< 47 Varable

14.00

1200—- e R

10.00 - / ” 4
8.00 / —
600~

400 ——— - e

0.00

Size, bits
0.00 50.00 100.00 150.00 200.00 250.00

Fig. 1I. Delay versus adder size in adders using a 2-level BCLA/CLA
carry implementation. -7

272 Lee and Oklobdzija

Datav. i 3 Level BCLA/CLA: Delay vs, Size

1440

1200

1K

.00

6.00

4.0

200

0.00

Size, bits
Q.00 30.00 100.00 150.00 200.00 250.00

Fig. I2. Delay versus adder size in adders using a 3-level BCLA/CLA
carry implementations.

signals on that level than was necessary, then the size
of the group corresponding to the most significant bits
of the adder was decreased to eliminate the excess capa-
bility. The Variable curve for the two-level BCLA/CLA
carry implementation (figure 11) was obtained using the
first set of heuristics. This version of the algorithm
worked well for this lookahead implementation but not
as well for the three-level implementation. The Vari-
able curve for the three-level BCLA/CLA carry imple-
mentation (figure 12) was obtained using the second

11
\/
1 2
\/
1 2 111 1111
N 7 Nt/ O
1 2 11 8 1
~ 7 NN S ~
2 3 2

11 11
v/ \/
11 111 2 1111 2
\/ SN S NSV

2

4\5\\

set of heuristics since it produced better results than
the first set.

Figure 13 gives the optimal 32-bit adder structure
found by each algorithm version. The I's represent input
from the initial bit positions.

The results correspond well to theory. Adders of
fixed-size groups are slower than adders allowing vari-
able inter-level groups. Adders with variable groups and
levels are faster than both other types. The optimal
Variable structures tend to have more levels and larger
group sizes in the middle of the adder than on the ends.
Results of comparing the different lookahead imple-
mentations are mixed. The Fixed and Inter-level three-
level implementations performed much better than the
two-level implementations. However, the heuristics
improved the performance of the two-level implemen-
tations more than they improved the three-level imple-
mentations. The delay differences between the Variable
adders of the two implementations is smaller, though
the three-level implementation is still faster for larger
adders.

Table 1 compares the delays of adders generated
from the carry-lookahead network configurations of [5]
with the delay adder structures found by the first ver-
sion of the basic algorithm. The comparisons are based
on the two-level implementations of the BCLA/CLA
units. The delay models are those used in [5] plus an
equivalent XOR delay model. The delay functions used

11
\/
2 1111
N 7 M\ S
2 4 11111

Fig. 13. 32-bit adders found by (a) the first set of heuristics using 2-level BCLA/CLA units (delay = 8.5 ns) and (b) the second set of heuristics

using 3-level BCLA/CLA units (delay = 8.9 ns).

- e

tyanp = Sfi + 20fo

tp = 17 + 20fi + Sfo
twy = 12 + 5fo

tyor = Sto.

The adder structures found by the first version of the
basic algorithm are faster in all cases.

Table 1. Adder sum delays for configurations from [1] and for adders
found by the first version of the basic algorithm.

Delay
Adder Size, bits Chan, et al. First Algorithm

8 407 394

16 524 514
24 627 584
32 652 637
48 736 721
64 821 779
66 824 779
84 877 834

Table 2 compares the adder structures corresponding
to the delays in table 1. The structures are represented
in parentheses notation as in [5]. For example, the adder

Improved CLA Scheme with Optimized Delay 273

structures shown in figures 13(a) and 13(b) are repre-
sented as

@aaayumar3y)asHa2ysssy
and
Q1112)(11112)6(2222)5),

respectively. The numbers in the expression represent
the block sizes at the highest level.

5. Conclusion

Varying group sizes and lookahead levels improves the
performance of commonly used CLA implementations.
Unfortunately, finding these improved structures is dif-
ficult because of delay fan-in and fan-out dependencies.
In general, the whole adder structure must be known
before a decision to increase group sizes or the number
of lookahead levels can be made. Fortunately, simple
heuristics can deal effectively with this problem. Sim-
ulation results show that heuristic methods can find
CLA adder structures with variable group sizes and
levels that are faster than more constrained carry-
lookahead adders.

Table 2. Adder structures corresponding to the delay values in table 1.

Adder size, bits Source Adder Structure

8 Chan, et al. 11222
First Algorithm 1232

16 Chan, et al. 212421y
First Algorithm aapya1r2y4etri

24 Chan, et al. (13)2Q22)232)(322)
First Algorithm Q2124421103

32 Chan, et al. WWaAa2n2)r2)3)@232)322)22)
First Algorithm Qa2ya13a122)232)322)21)

48 Chan, et al. WUy EW2a2y32)

(12)332)433)»)32)

First Algorithm

(aa2nairar2ydardans

(12)3Q11)EdE1InN3nELL3)

64 Chan, et al.

(231233)23422)1122)Q222)

GER22G23m»E2NY

First Algorithm

(@A A A1a1I3))a1a24qa)

112)@22)1211)@322@2H)@2HE11)

66 Chan, et al.

(23 ((1233)(234Q22)((122)222)

BB22)BEN G2

First Algorithm

(@@ @@ aiar3))ara2)aa)

113232 1211)(322@2D))R21HQ11)

84 Chan, et al.

(34(@@23(122322)W122)232)322)

@32)(322)32)EB22G23)HE2Y2

First Algorithm

@Qa@AQa))a1a1rarnaraay a2y

@a2)A13233)1222)333)
(@11D32)E32621D)

274 Lee and Oklobdzija

Work is in progress to re-run the simulations in this
paper for ECL delay data. This is particularly impor-
tant in the domain of high performance machines where
bipolar is the dominant technology. Also, more heuris-
tics and implementations will be examined. For exam-
ple, a hybrid of the two sets of heuristics presented here
will be tried and an adder structure that uscs the three-
Jevel BCLA carry implementation with the two-level
CLA carry implementation will be tested.

Acknowledgments

The authors would like to thank Professor Pak Chan
for sharing his ideas and insight on carry-lookahead
adders. His many helpful discussions and suggestions
are greatly appreciated.

References

1. R. Sherburne, Jr., “Processor design tradeoffs in VLSL” Technical
Report UCB/CSD 84/173, University of California, Berkeley, 1984.

2. J. Sklansky, “An evaluation of several two-summand binary
adders,” IRE Trans., EC-9(2), 1960, pp. 213-226.

3. VG. Oklobdzija and E.R. Barnes, “On implementing addition in
VLSI technology,” Journal of Parallel and Distributed Computing,
5, 1988, pp. 716-728.

4. S. Turrini, “Optimal group distribution in carry-skip adders,” In
Proceedings of the 9th Symposium on Computer Arithmetic, 1989,
pp. 1-18.

5. PX. Chan, M.D.E Schlag, C.D. Thomborson, and VG.
Oklobdzija, “Delay optimization of carry-skip adders and block
carry-lookahead adders,” in Proceedings of the 10th IEEE Sym-
posium on Computer Arithmetic, June 1991, pp. 159-164.

6. B.D. Lee and V.G. Oklobdzija, “Optimization and speed improve-
ment analysis of carry-lookahead adder structure,” In Proceedings
of the Asilomar Conference on Signals, Systems, and Computers,
1990, pp. 918-922.

7. K. Hwang, Computer Arithmetic: Principles, Architecture, and
Design, New York: Wiley & Soms, 1979.

8. LSI Logic Corporation, Databook: 1.5 Micron Compacted Array™
Technology, 1981.

Brian D. Lee (S '82) received his B.S. and M.S. degrees in electrical
engineering from the University of California, Berkeley in 1985 and
1989, respectively. He is currently working towards the Ph.D. degree
in electrical engineering at that institution.

His research interests include CAD for VLSI, computer architec-
ture, and computer arithmetic.

Vojin G. Oklobdzija obtained Dipl. Ing. degree from the Electrical
Engineering Department, University of Belgrade, Yugoslavia in 1971.
He came to the U.S. in 1976 as a Fulbright Scholar to study computer
science and he obtained his M.Sc. and Ph.D. degrees from the Univer-
sity of California in 1978 and 1982. He also worked at VLSI division
of Xerox Corporation during the last phase of his Ph.D. program.
In 1982 he moved to T.J. Watson Research Center of IBM Corpora-
tion and worked on several programs developing IBM RISC architec-
ture. He holds several patents in the area of RISC architecture and
VLSI. Most recently he became co-holder of the patent on IBM
RS/6000 architecture. In 1988 he left IBM and was teaching computer
architecture and design at the University of California Berkeley. In
October of 1991 he resumed working at IBM T.J. Watson Research.
His work and interest has been in the areas of Computer Arithmetic,
High Performance Architectures and VLSI oriented arithmetic and
implementations. Most recently he has been working on develop-
ment of parallel super-computer architecture.

